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11.1 Overview

The topic of the lecture is “Time ordering and clock synchronization.” This lecture covered the following
topics:

Clock Synchronization: Cristian’s algorithm, Berkeley algorithm, NTP, GPS

Logical Clocks: Event ordering

11.2 Clock Synchronization

11.2.1 The motivation of clock synchronization

Just like usual clocks, systems have a clock that tells time to applications running on the system. Centralized
machines have just 1 clock, but in the case of distributed systems each machine has its own clock. All these
clocks might not be in sync and may drift over time. Hence the time will be dependent on which local clock
is being checked.

For example, you modify files and save them on one machine A, and use another machine B to compile
the files modified. If machine B has a faster clock than machine A, you may not correctly compile the files
modified because the time of compiling files on machine B may be later than the time of editing files on
machine A according to local timestamp on different machines, thus leading to errors.

11.2.2 How physical clocks and time work

1) One approach is to use astronomical metrics (solar day) to tell time. For example, solar noon is the time
that sun is directly overhead. “Noon” on our clocks is different from solar noon. Noon depends on time zone
while solar noon is a fixed physical fact. We typically use the notion of solar day to tell there are 24 hours
between the time that sun is directly overhead on a particular location. Although this method was used for
centuries, it is not accurate since it is based on the length of a day.

2) Atomic clocks use the properties of atoms to measure time. Atomic clocks are the most accurate clocks
and other clocks derive from this time. Typically, you will have some centralized atomic clock broadcast its
time. The receivers, which may use less accurate mechanisms, are then synchronized with the atomic clock.
For example, cell-phone clock also uses an atomic clock to synchronize time with cell-phone broadcast tower.
Some satellites also broadcast time based on atomic clocks.

3) Coordinated universal time (UTC) is based on noon in Greenwich (UK). All time zones are offset by UTC.
Most of the atomic clocks broadcast UTC time regardless of timezone using wireless channels, satellites, FM
radios, etc. Receivers listen to this and set local time based on the broadcast time.
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4) Mechanical clock are less accurate—the accuracy is roughly one part per million. Computers typically use
mechanical clocks. This small amount of inaccuracy results in clock drift because the property of the physical
mechanism (usually quartz) can change with environmental properties such as temperature or humidity. To
avoid clock drift, we need to synchronize machines with a master or with one another.

11.2.3 Drift tolerance and frequency of synchronization

Actual clocks have drift and hence need synchronization once in a while. Just like the drift developed over
time in a mechanical clock due to the quartz crystal inside it, computer clocks also develop drift over time
since they also use a chip which depends on a physical material to tell time. This drift needs to be calculated
to determine how frequently synchronization is needed.

Figure 11.1: Clock drift relative to a perfect clock.

In Figure 12.1, Here, t is UTC time, C is clock time, and slope, dC/dt, is the rate of advancement of the
clock. ρ indicates the maximum drift rate of the clock. Consider the following cases: a. If the dC/dt = 1,
the real time and clock advances proportionally and are in sync. b. If the dC/dt < 1, real time advances by
1 second and the clock will advance by (1− ρ) second, i.e., the clock runs slower. c. If the dC/dt > 1, real
time advances by 1 second then clock will advance by (1 + ρ) second, i.e., the clock runs faster. Two clocks
may drift by 2ρ∆t in time ∆t. To limit the error in clock to δ, we need to synchronize every δ/2ρ seconds.

11.3 Centralized clock synchronization algorithms

11.3.1 Christian’s Algorithm

In Cristian’s Algorithm, is a master machine called time server which is the authoritative clock for telling
time. It is in sync with the atomic clock via a UTC receiver. Other machines in the system synchronize
with the time server.
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Figure 11.2: Cristian’s Algorithm.

Machine P sends message to the time server to check the current time. After taking some time (treq) to
propagate, the request reaches the time server and will then be processed. The time server then returns the
current time (t) and machine P uses this time to reset its clock. The machine P will set its time as (t+treply)
and not just t. This is done so as to take the propagation delay from server to machine P into account. We
can use (treq + treply)/2 as an estimation of treply. The better the estimate, the better the synchronization.

Question: Can we take the treq and subtract the time that was sent back to calculate delta time?
Answer: To do this, we also need to assume that the process P is already synchronized with the time server
to get the accurate delta time, which is not the case.

Question: Since we know the drift rate of a clock, can’t we use that to synchronize?
Answer: The drift rate is just a maximum value which is not constant. Every watch might drift away at a
different rate based on various factors. For example, drift in mechanical clocks change based on temperature.
So drift rate can’t be used for synchronization.

11.3.2 Berkeley Algorithm

This algorithm doesn’t use a time server. Instead, clocks are synchronized with one another in a group,
and no machine in this group synchronize with external atomic clock. We use leader election to select a
“master” in a group to run clock synchronization while others are “slaves.” This master clock is known as
the coordinator. Each machine sends their local time to the coordinator. The coordinator then calculates an
average of these times. Based on the value of average, the time of all clocks are adjusted. For example, three
machines reply with their clock values as time difference of 0, -10, +25 at 3:00, then the master will tell all
those machines to set their clock at 3 : 00 + 5(5 = (0− 10 + 25)/3). This is a relative clock synchronization
algorithm, not an absolute synchronization algorithm. The propagation times are estimated in the same way
as Cristian’s algorithm.

Question: Does the drift rate change over time?
Answer: It may change over time, but the manufacturer of the clocks guarantees that the drift will be
between 0 and ρ (both included).

Question: What happen to a processor when we change the value of a clock?
Answer: Processor does not care about the time, we are just changing the time, not what is happening at
the processor level.
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Question: What if treply is greater than the re-synchronization?
Answer: That should not happen. Clocks should not be that off. Re-synchronization should happen every
seconds or minutes granularity, but propagation delay is in milliseconds.

Question: What happens if the clock is advanced? backwards?
Answer: When treply − tsend is positive, we cannot tell that the clock is advanced. However, the negative
value of treply − tsend can cause the problem to the system.

When the clock is advanced, we cannot tell from the treply − tsend that the clock

Question: If every machine has its own drift rate, how should we synchronize?
Answer: It is more of a design choice. In general you can take the max drift rate across all the machine
and use that to synchronize.

11.4 Distributed clock synchronization approaches

Both Cristian’s and Berkley are centralized algorithms. Apart from these, there are also decentralized
algorithms using resynchronized intervals. In a decentralized version of Berkley, the role of coordinator is
eliminated. Instead, all machines broadcast their times to all other machines at the start of the interval. At
every machine, suppose n clock values are received within the interval. Then at the end of period S, their
average is calculated which is then used to set their local time. The latency caused by the network while
communicating is also adjusted during this time at the receiver end. For the outliers, machines can throw
away few highest and lowest values to avoid negative influence of extremely fast or slow clocks relative to
the average time.

There are two decentralized approaches in use today. One approach is using NTP which is used by most
computers. It uses a time server and advanced techniques to deal with network propagation delays. The
accuracy is typically between 1 and 50ms. Note that the clocks can still drift from each other, but not more
than 50ms. This also means that the estimate of the network roundtrip time cannot be off by 50ms.

11.4.1 Network Time Protocol (NTP)

NTP is widely used standard which based on Cristian’s algorithm. In NTP clock synchronization, you also
want to find out network propagation delay (dTres), using eigth pairs of delays from A to B and B to A. NTP
clock synchronization uses a hierarchical protocol and unlike Cristian’s algorithm, it does not let the clock
be set backward. Since the fast clock cannot go backward, it is synchronized by slowing it down. Letting
a clock go backward can have many negative consequences (such as two files having the same timestamp).
This is the reason why NTP is widely used compared to Cristian’s algorithm. Note that different hierarchies
can synchronize with each other with 50ms maximum error. This means that in a larger organization, only
one time server is needed to synchronize with other computers.
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Figure 11.3: Network Time Protocol (NTP).

11.4.2 Global Positioning System (GPS)

GPS is a technology that allows any device to figure out its location. It requires clock synchronization to
accurately figure out where the device is located. For example, a phone has a GPS chip that listens to
satellite broadcasts. Uses the principle of triangulation to know where you are with respect to the known
position of the satellite. These known positions are called landmarks. GPS achieves high accuracy because
it is synchronized with satellites which use atomic clocks without a hierarchical protocol. It is assumed that
the satellites are in perfect synchronization with an atomic clock.

Figure 11.4: Global Positioning System (GPS)

2D space: Let the 2 landmarks be (14,14) and (-6,6). A device somewhere in this space will measure its
distance with respect to these landmarks. Say, it is 16 units from the first landmark and 10 units from the
second, this means that the device is on the intersection of the 2 circles because it has to satisfy both the
distance constraints. If a 3rd landmark is added, then the exact position of the device can be known.

3D space: We assume GPS landmark A with its position (x1, y1, z1) and its timestamp t1, and GPS receiver
B (e.g. a car) with its unknown position (x, y, z) and the timestamp t receiving broadcast t1 message from a
GPS landmark. Then the distance between A and B is di =

√
x− x1)2 + (y − y1)2 + (z − z1)2, and di also

equals c(t2 − t1), where c is the speed of light. If we assume the receiver has a drift time dr from landmark
A, then we can use Equation (1) to show that c(t2 + dr − t1) =

√
(x− x1)2 + (y − y1)2 + (z − z1)2. From

Equation (1), we can see that there are 4 unknowns, x, y, z and dr, thus we need minimum 4 satellites
to compute the location of a GPS receiver as well as its time value. If we get 4 satellites, then we can
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get multiple solutions of the location of the receiver. If we have 6 or 8 satellites, we can quickly narrow
the solutions. Therefore, GPS does clock synchronization as well as computing the receiver’s location, the
satellites just keep broadcasting the time. Note that you have to have the geo-stationary satellites for this
to work (move at the same rate as the earth).

11.5 Logical clock

The above approaches use timestamps to reason the order of events. If the time difference between two
events is smaller than the accuracy, then we cannot say which event happens first, thus problems may be
caused. In some cases, if processes need to know the order in which the events occurred instead of the exact
time, then logical clocks should be used. Hence absolute time isn’t important and clock synchronization isn’t
needed. In other words, the logical clock allows us to reason the order of the event, but not the actual time
difference between the events.

11.5.1 Event Ordering

In logical clocks, there is no global clock and local clocks may run faster or slower. The ordering of events
needs to be figured out in such a situation. There are some key ideas of logical clocks proposed by the scientist
Lamport: we can use send/receive messages exchanged between processes/machines to order events, and if
2 processes never communicate with each other, then in such cases we don’t need to find order.

The happened-before relation: We use the fundamental property that the send event occurs before the
receive event. The relation is transitive, i.e, if A occurs before B and B occurs before C, then A occurs before
C.

Figure 11.5: The “happened-before” relation. Note that we cannot say anything about the relation with
the yellow event.

Each processor has a logical clock which gets incremented whenever an event occurs. Suppose when process
i sends a message to process j, it piggybacks its local timestamp (say LCi=3) along with the message. The
receiver takes this timestamp and its local timestamp (say LCj=4). Then the maximum of both these values
is calculated and incremented by 1, i.e, max(LCi, LCj) + 1. This makes sure that the timestamp assigned
to the receiver event is higher than the sending event. This technique was invented by Leslie Lamport.

The above algorithm only solves half the problem as it gives only forward property and not the reverse
property (i,e if timestampA < timestampB then A has occurred before B). Hence further changes are
needed in this approach.


